Distances in the Universe

Stanislav Štefl

Astronomical Institute, Academy of Sciences of the Czech Republic, Ondřejov

Syllabus:

1. The rules and units
2. Distances in the Solar system
3. Stars and Galaxy
4. Beyond our Galaxy

Cosmic rules and units

kilometer: too small unit to use it in astronomy
Astronomical unit (AU): The mean distance of the Earth from the Sun (original definition)
$1 \mathrm{AU}=149597870 \mathrm{~km}=499.005$ light seconds
Light year (ly): The distance crossed by the light during one year. Light speed c $=299792 \mathrm{~km} / \mathrm{s} \Rightarrow$
$1 \mathrm{ly}=63240 \mathrm{AU}=9.450 \cdot 10^{12} \mathrm{~km}$
Parsec: (parallax + second)
Parallax: distance indicator. Annual parallax of a star the angle, under which we could see the the Earth orbit from the star.
Parsec: the distance, from which the big axis of the Earth orbit can be seen under the angle of 1 arcsec.

Giant Planet Saturn ($\mathrm{H}+\mathrm{K}$-band composite)

The solar system

How to measure the distances?
Today: radar and laser measurements with very high accuracy
Historically: using trigonometric relations, however, we need to know one (as long as possible) distance in the triangle - (AU determined from the Venus transit!), the third Kepler law.

Distances:

Earth - Moon $\quad 380400$ km $\quad 0.003$ AU
Sun - Mercury 0.383 AU

Sun - Venus
Sun - Earth
Sun - Mars
Sun - Jupiter
Sun - Saturn
0.723 AU
1.000 AU
1.524 AU
5.200 AU

Sun - Uranus
9.539 AU

Sun - Pluto
19.18 AU

Oort's comet cloud
39.2 AU

3000-135000 AU

Stars and Galaxy

- How to measure the distances?

1. (annual) parallaxes: thanks to the Hubble telescope and Hipparcos, we know trigonometric parallaxes of stars up to ≈ 1000 ly
2. from the brightness and luminosity (derived from the $\mathrm{H}-\mathrm{R}$ diagram)
3. from periodic variations of pulsating stars, e.g. Cepheids. There exist an accurate relation between their luminosity and period - the slower is the pulsation, the higher is the luminosity.
4. from the maximum brightness of supernovae - for the given type of supernovae the maximum brightness during the outburst is almost constant.

- Closest stars: a few light years
- Diameter of the Milky Way:

Huge flattened disk containing ≈ 150 milliards of stars:
large semi-axis of the disk
halo radius
distance to the Galaxy center

50000 ly 100000 ly 30000 ly

Extragalactic distances

- How to measure the distances?

1. Cepheids - permit to measure distances up to 100000000 ly - first used by Hubble to derive the distance of the Andromeda galaxy (M31 - the most distant object seen with a naked eye) and many other galaxies.
2. so called redshift - the spectral lines are more shifted for more distant galaxies (Hubble law).
A galaxy at a distance of 1000000 ly has velocity $20 \mathrm{~km} / \mathrm{s}$ (the value of the Hubble constant) Virgo cluster (60000000 ly) - velocity $1200 \mathrm{~km} / \mathrm{s}$
3. Supernovae - (of type Ia) up to milliard of light years

Let's travel with light through the Universe

Earth
Moon
Sun
Pluto
Proxima Centauri
Sirius
Polaris
Galaxy center
M31 (Andromeda galaxy)
Virgo cluster of galaxies
2C273 quasar

0.00
1.2 s

8 minutes 20 seconds
6.5 hours
4.3 years
8.6 years

432 years
30000 years
2400000 years
60000000 years
2500000000 years

Learning more about distances in the universe and its structure the people may get more respect to the nature and a bird's eye view of their "big" daily problems.

