Distances in the Universe

Stanislav Štefl

Astronomical Institute, Academy of Sciences of the Czech Republic, Ondřejov

Syllabus:

- 1. The rules and units
- 2. Distances in the Solar system
- 3. Stars and Galaxy
- 4. Beyond our Galaxy

Cosmic rules and units

kilometer: too small unit to use it in astronomy

Astronomical unit (AU): The mean distance of the Earth from the Sun (original definition)

1 AU = 149 597 870 km = 499.005 light seconds

Light year (ly): The distance crossed by the light during one year. Light speed c = 299 792 km/s \Rightarrow 1 ly = 63 240 AU = 9.450 . 10¹² km

Parsec: (parallax + second)

Parallax: distance indicator. Annual parallax of a star the angle, under which we could see the the Earth orbit from the star.

Parsec: the distance, from which the big axis of the Earth orbit can be seen under the angle of 1 arcsec.

UTANUS WITH KINGS AND MOONS (VLT ANTU + ISAAC) ESO PR Photo 31h/92 (20 December 2002) DEuropean Southern Observatory

The solar system

How to measure the distances?

Today: radar and laser measurements with very high accuracy

Historically: using trigonometric relations, however, we need to know one (as long as possible) distance in the triangle - (AU determined from the Venus transit!), the third Kepler law.

Distances:

380 400 km	0.003 AU
	0.383 AU
	0.723 AU
	1.000 AU
	1.524 AU
	5.200 AU
	9.539 AU
	19.18 AU
	39.2 AU
	3 000 - 135 000 AU
	380 400 km

Stars and Galaxy

• How to measure the distances?

- 1. (annual) parallaxes: thanks to the Hubble telescope and Hipparcos, we know trigonometric parallaxes of stars up to ≈ 1000 ly
- 2. from the brightness and luminosity (derived from the H-R diagram)
- from periodic variations of pulsating stars, e.g. Cepheids. There exist an accurate relation between their luminosity and period - the slower is the pulsation, the higher is the luminosity.
- 4. from the maximum brightness of supernovae for the given type of supernovae the maximum brightness during the outburst is almost constant.
- Closest stars: a few light years

• Diameter of the Milky Way:

Huge flattened disk containing ≈ 150 milliards of stars:

large semi-axis of the disk	50 000 ly
halo radius	100 000 ly
distance to the Galaxy center	30 000 ly

Extragalactic distances

• How to measure the distances?

- Cepheids permit to measure distances up to 100 000 000 ly - first used by Hubble to derive the distance of the Andromeda galaxy (M31 - the most distant object seen with a naked eye) and many other galaxies.
- 2. so called redshift the spectral lines are more shifted for more distant galaxies (Hubble law).
 A galaxy at a distance of 1 000 000 ly has velocity 20 km/s (the value of the Hubble constant)
 Virgo cluster (60 000 000 ly) velocity 1200 km/s
- 3. Supernovae (of type Ia) up to milliard of light years

Let's travel with light through the Universe

Earth	0.00
Moon	1.2 s
Sun	8 minutes 20 seconds
Pluto	6.5 hours
Proxima Centauri	4.3 years
Sirius	8.6 years
Polaris	432 years
Galaxy center	30 000 years
M 31 (Andromeda galaxy)	2 400 000 years
Virgo cluster of galaxies	60 000 000 years
2C273 quasar	2 500 000 000 years

Learning more about distances in the universe and its structure the people may get more respect to the nature and a bird's eye view of their "big" daily problems.